Модуль числа (абсолютная величина числа), определения, примеры, свойства. Изображение чисел на прямой

ГЛАВА 1. Переменные величины и функции

§1.1. Действительные числа
Первое знакомство с действительными числами происходит в школьном курсе математики. Всякое действительное число представляется конечной или бесконечной десятичной дробью.

Действительные (вещественные) числа делятся на два класса: класс рациональных и класс иррациональных чисел. Рациональными называются числа, которые имеют вид , где m и n – целые взаимно простые числа, но
. (Множество рациональных чисел обознается буквой Q ). Остальные действительные числа называются иррациональными . Рациональные числа представляются конечной или бесконечной периодической дробью (то же, что обыкновенные дроби), тогда иррациональными будут те и только те действительные числа, которые можно представить бесконечными непериодическими дробями.

Например, число
– рациональное, а
,
,
и т.п. – иррациональные числа.

Действительные числа можно также разделить на алгебраические - корни многочлена с рациональными коэффициентами (к ним относятся, в частности, все рациональные числа – корни уравнения
) – и на трансцендентные – все остальные (например, числа
и другие).

Множества всех натуральных, целых, действительных чисел обозначаются соответственно так: N Z , R
(начальные буквы слов Naturel, Zahl, Reel).

§1.2. Изображение действительных чисел на числовой оси. Интервалы

Геометрически (для наглядности) действительные числа изображают точками на бесконечной (в обе стороны) прямой линии, именуемой числовой осью . С этой целью на рассматриваемой прямой берётся точка (начало отсчёта – точка 0), указывается положительное направление, изображаемое стрелкой (обычно направо) и избирается единица масштаба, которую откладывают неограниченно в обе стороны от точки 0. Так изображаются целые числа. Чтобы изобразить число с одним десятичным знаком, надо каждый отрезок разделить на десять частей и т.д. Таким образом, каждое действительное число изобразится точкой на числовой оси. Обратно, каждой точке
соответствует действительное число, равное длине отрезка
и взятое со знаком «+» или «–», в зависимости от того, лежит ли точка правее или левее от начала отсчёта. Таким образом устанавливается взаимнооднозначное соответствие между множеством всех действительных чисел и множеством всех точек числовой оси. Термины «действительное число» и «точка числовой оси» употребляются как синонимы.

Символом будем обозначать и действительное число, и точку, ему соответствующую. Положительные числа располагаются правее точки 0, отрицательные – левее. Если
, то на числовой оси точка лежит левее точки . Пусть точке
соответствует число , тогда число называется координатой точки , пишут
; чаще саму точку обозначают той же буквой , что и число. Точка 0 – начало координат. Ось обозначают тоже буквой (рис.1.1).

Рис. 1.1. Числовая ось.
Совокупность всех чисел, лежащих между данными числами и называется интервалом или промежутком; концы и ему могут принадлежать, а могут и не принадлежать. Уточним это. Пусть
. Совокупность чисел , удовлетворяющих условию
, называется интервалом (в узком смысле) или открытым интервалом, обозначается символом
(рис.1.2).

Рис. 1.2. Интервал
Совокупность чисел таких, что
называется замкнутым интервалом (отрезок, сегмент) и обозначается через
; на числовой оси отмечается так:

Рис. 1.3. Замкнутый интервал
От открытого промежутка он отличается лишь двумя точками (концами) и . Но это отличие принципиальное, существенное, как увидим в дальнейшем, например, при изучении свойств функций.

Опуская слова «множество всех чисел (точек) x таких, что» и т. п., отметим далее:

и
, обозначается
и
полуоткрытые, или полузамкнутые, интервалы (иногда: полуинтервалы);

или
означает:
или
и обозначается
или
;

или
означает
или
и обозначается
или
;

, обозначается
множество всех действительных чисел. Значки
символы «бесконечности»; их называют несобственными или идеальными числами.

§1.3. Абсолютная величина (или модуль) действительного числа
Определение. Абсолютной величиной (или модулем) числа называется само это число, если
или
если
. Обозначается абсолютная величина символом . Итак,

Например,
,
,
.

Геометрически означает расстояние точки a до начала координат. Если имеем две точки и , то расстояние между ними можно представить как
(или
). Например,
то расстояние
.

Свойства абсолютных величин.

1. Из определения следует, что

,
, то есть
.

2. Абсолютная величина суммы и разности не превосходит суммы абсолютных величин:
.

1) Если
, то
. 2) Если
, то . ▲

3.
.

, тогда по свойству 2:
, т.е.
. Аналогично, если представить
,то придём к неравенству

4.
– следует из определения: рассмотреть случаи
и
.

5.
, при условии, что
Так же следует из определения.

6. Неравенство
,
, означает
. Этому неравенству удовлетворяют точки, которые лежат между
и
.

7. Неравенство
равносильно неравенству
, т.е. . Это есть интервал с центром в точке длины
. Он называется
окрестностью точки (числа) . Если
, то окрестность называется проколотой: это или
. (Рис.1.4).

8.
откуда следует, что неравенство
(
) равносильно неравенству
или
; а неравенство
определяет множество точек, для которых
, т.е. это точки, лежащие вне отрезка
, именно:
и
.

§1.4. Некоторые понятия, обозначения
Приведём некоторые широко применяемые понятия, обозначения из теории множеств, математической логики и других разделов современной математики.

1 . Понятие множества является одним из основных в математике, исходным, всеобщим – а потому не поддаётся определению. Его можно лишь описать (заменить синонимами): это есть собрание, совокупность каких-то объектов, вещей, объединённых какими-либо признаками. Объекты эти называются элементами множества. Примеры: множество песчинок на берегу, звёзд во Вселенной, студентов в аудитории, корней уравнения, точек отрезка. Множества, элементы которых суть числа, называются числовыми множествами . Для некоторых стандартных множеств вводятся специальные обозначения, например, N , Z , R - см. § 1.1.

Пусть A – множество и x является его элементом, тогда пишут:
; читается «x принадлежит A » (
знак включения для элементов). Если же объект x не входит в A , то пишут
; читается: «x не принадлежит A ». Например,
N ; 8,51N ; но 8,51R .

Если x является общим обозначением элементов множества A , то пишут
. Если возможно выписать обозначение всех элементов, то пишут
,
и т. п. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается символом ; например, множество корней (действительных) уравнения
есть пустое.

Множество называется конечным , если оно состоит из конечного числа элементов. Если же какое бы натуральное число N ни взяли, во множестве A найдётся элементов больше, чем N, то A называется бесконечным множеством: в нём элементов бесконечно много.

Если всякий элемент множества ^ A принадлежит и множеству B , то называется частью или подмножеством множества B и пишут
; читается «A содержится в B » (
есть знак включения для множеств). Например, N Z R. Если и
, то говорят, что множества A и B равны и пишут
. В противном случае пишут
. Например, если
, а
множество корней уравнения
, то .

Совокупность элементов обоих множеств A и B называется объединением множеств и обозначается
(иногда
). Совокупность элементов, принадлежащих и A и B , называется пересечением множеств и обозначается
. Совокупность всех элементов множества ^ A , которые не содержатся в B , называется разностью множеств и обозначается
. Схематично эти операции можно изобразить так:

Если между элементами множеств можно установить взаимно-однозначное соответствие, то говорят, что эти множества эквивалентны и пишут
. Всякое множество A , эквивалентное множеству натуральных чисел N = называется счётным или исчислимым. Иначе говоря, множество называется счётным, если его элементы можно пронумеровать, расположить в бесконечную последовательность
, все члены которой различны:
при
, и его можно записать в виде . Прочие бесконечные множества называются несчётными . Счётными, кроме самого множества N, будут, например, множества
, Z. Оказывается, что множества всех рациональных и алгебраических чисел – счётные, а эквивалентные между собой множества всех иррациональных, трансцендентных, действительных чисел и точек любого интервала – несчётные. Говорят, что последние имеют мощность континуума (мощность – обобщение понятия количества (числа) элементов для бесконечного множества).

2 . Пусть есть два утверждения, два факта: и
. Символ
означает: «если верно , то верно и » или «из следует », « имплицирует есть корень уравнения обладает свойством от английского Exist – существовать.

Запись:

, или
, означает: существует (по крайней мере один) предмет , обладающий свойством . А запись
, или
, означает: все обладают свойством . В частности, можем записать:
и .

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 44 Геометрическое изображение действительных чисел

Геометрически действительные числа, так же как и рациональные числа, изображаются точками прямой.

Пусть l - произвольная прямая, а О - некоторая ее точка (рис. 58). Каждому положительному действительному числу α поставим в соответствие точку А, лежащую справа от О на расстоянии в α единиц длины.

Если, например, α = 2,1356..., то

2 < α < 3
2,1 < α < 2,2
2,13 < α < 2,14

и т. д. Очевидно, что точка А в этом случае должна находиться на прямой l правее точек, соответствующих числам

2; 2,1; 2,13; ... ,

но левее точек, соответствующих числам

3; 2,2; 2,14; ... .

Можно показать, что эти условия определяют на прямой l единственную точку А, которую мы и рассматриваем как геометрический образ действительного числа α = 2,1356... .

Аналогично, каждому отрицательному действительному числу β поставим в соответствие точку В, лежащую слева от О на расстоянии в | β | единиц длины. Наконец, числу «нуль» поставим в соответствие точку О.

Так, число 1 изобразится на прямой l точкой А, находящейся справа от О на расстоянии в одну единицу длины (рис. 59), число - √2 - точкой В, лежащей слева от О на расстоянии в √2 единиц длины, и т. д.

Покажем, как на прямой l с помощью циркуля и линейки можно отыскать точки, соответствующие действительным числам √2 , √3 , √4 , √5 и т. д. Для этого прежде всего покажем, как можно построить отрезки, длины которых выражаются этими числами. Пусть АВ есть отрезок, принятый за единицу длины (рис. 60).

В точке А восставим к этому отрезку перпендикуляр и отложим на нем отрезок АС, равный отрезку АВ. Тогда, применяя теорему Пифагора к прямоугольному треугольнику ABC, получим; ВС = √АВ 2 + АС 2 = √1+1 = √2

Следовательно, отрезок ВС имеет длину √2 . Теперь восставим перпендикуляр к отрезку ВС в точке С и выберем на нем точку D так, чтобы отрезок CD был равен единице длины АВ. Тогда из прямоугольною треугольника BCD найдем:

ВD = √ВC 2 + СD 2 = √2+1 = √3

Следовательно, отрезок BD имеет длину √3 . Продолжая описанный процесс дальше, мы могли бы получить отрезки BE, BF, ..., длины которых выражаются числами √4 , √5 и т. д.

Теперь на прямой l легко найти те точки, которые служат геометрическим изображением чисел √2 , √3 , √4 , √5 и т. д.

Откладывая, например, справа от точки О отрезок ВС (рис. 61), мы получим точку С, которая служит геометрическим изображением числа √2 . Точно так же, откладывая справа от точки О отрезок BD, мы получим точку D", которая является геометрическим образом числа √3 , и т. д.

Не следует, однако, думать, что с помощью циркуля и линейки на числовой прямой l можно найти точку, соответствующую любому заданному действительному числу. Доказано, например, что, имея в своем распоряжении только циркуль и линейку, нельзя построить отрезок, длина которого выражается числом π = 3,14 ... . Поэтому на числовой прямой l с помощью таких построений нельзя указать точку, соответствующую этому числу Тем не менее такая точка существует.

Итак, каждому действительному числу α можно поставить в соответствие некоторую вполне определенную точку прямой l . Эта точка будет отстоять от начальной точки О на расстоянии в | α | единиц длины и находиться справа от О, если α > 0, и слева от О, если α < 0. Очевидно, что при этом двум неравным действительным числам будут соответствовать две различные точки прямой l . В самом деле, пусть числу α соответствует точка А, а числу β - точка В. Тогда, если α > β , то А будет находиться правее В (рис. 62, а); если же α < β , то А будет лежать левее В (рис. 62,б).

Говоря в § 37 о геометрическом изображении рациональных чисел, мы поставили вопрос: любую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Тогда мы не могли дать ответ на этот вопрос; теперь же мы можем ответить на него вполне определенно. На прямой есть точки, которые служат геометрическим изображением иррациональных чисел (например, √2 ). Поэтому не всякая точка прямой изображает рациональное число. Но в таком случае напрашивается другой вопрос: любую ли точку числовой прямой можно рассматривать как геометрический образ некоторого действительного числа? Этот вопрос решается уже положительно.

В самом деле, пусть А - произвольная точка прямой l , лежащая справа от О (рис. 63).

Длина отрезка ОА выражается некоторым положительным действительным числом α (см § 41). Поэтому точка А является геометрическим образом числа α . Аналогично устанавливается, что каждая точка В, лежащая слева от О, может рассматриваться как геометрический образ отрицательного действительного числа - β , где β - длина отрезка ВО. Наконец, точка О служит геометрическим изображением числа нуль. Понятно, что две различные точки прямой l не могут быть геометрическим образом одного и того же действительного числа.

В силу изложенных выше причин прямая, на которой указана в качестве «начальной» некоторая точка О (при заданной единице длины), называется числовой прямой .

Вывод. Множество всех действительных чисел и множество всех точек числовой прямой находятся во взаимно однозначном соответствии.

Это означает, что каждому действительному числу соответствует одна, вполне определенная точка числовой прямой и, наоборот, каждой точке числовой прямой при таком соответствии отвечает одно, вполне определенное действительное число.

Упражнения

320. Выяснить, какая из двух точек находится на числовой прямой левее и какая правее, если эти точки соответствуют числам:

а) 1,454545... и 1,455454...; в) 0 и - 1,56673...;

б) - 12,0003... и - 12,0002...; г) 13,24... и 13,00....

321. Выяснить, какая из двух точек находится на числовой прямой дальше от начальной точки О, если эти точки соответствуют числам:

а) 5,2397... и 4,4996...; .. в) -0,3567... и 0,3557... .

г) - 15,0001 и - 15,1000...;

322. В этом параграфе было показано, что для построения отрезка длиной в √n с помощью циркуля и линейки можно поступить следующим образом: сначала построить отрезок длиной √2 , затем отрезок длиной √3 и т. д., пока не дойдем до отрезка длиной √n . Но при каждом фиксированном п > 3 этот процесс можно ускорить. Как бы, например, вы стали строить отрезок длиной √10 ?

323*. Как с помощью циркуля и линейки найти на числовой прямой точку, соответствующую числу 1 / α , если положение точки, соответствующей числу α , известно?

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Мы уже знаем, что множество действительных чисел $R$ образуют рациональные и иррациональные числа .

Рациональные числа всегда можно представить в виде десятичных дробей (конечных или бесконечных периодических).

Иррациональные числа записываются в виде бесконечных, но непериодических десятичных дробей.

Ко множеству действительных чисел $R$ принадлежат также элементы $-\infty $ и $+\infty $, для которых выполняются неравенства $-\infty

Рассмотрим способы представления действительных чисел.

Обычные дроби

Обычные дроби записывают с помощью двух натуральных чисел и горизонтальной дробной черты. Дробная черта фактически заменяет знак деления. Число под чертой - это знаменатель дроби (делитель), число над чертой - числитель (делимое).

Определение

Дробь называется правильной, если её числитель меньше знаменателя. И наоборот, дробь называется неправильной, если её числитель больше знаменателя или равен ему.

Для обычных дробей существуют простые, практически очевидные, правила сравнения ($m$,$n$,$p$ - натуральные числа):

  1. из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, то есть $\frac{m}{p} >\frac{n}{p} $ при $m>n$;
  2. из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, то есть $\frac{p}{m} >\frac{p}{n} $ при $ m
  3. правильная дробь всегда меньше единицы; неправильная дробь всегда больше единицы; дробь, у которой числитель равен знаменателю, равна единице;
  4. любая неправильная дробь больше любой правильной.

Десятичные числа

Запись десятичного числа (десятичной дроби) имеет вид: целая часть, десятичная запятая, дробная часть. Десятичную запись обычной дроби можно получить, выполнив деление "углом" числителя на знаменатель. При этом может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Определение

Цифры дробной части называют десятичными знаками. При этом первый разряд после запятой называют разрядом десятых, второй - разрядом сотых, третий - разрядом тысячных и т.д.

Пример 1

Определяем значение десятичного числа 3,74. Получаем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Десятичное число можно округлить. При этом следует указать разряд, до которого выполняется округление.

Правило округления состоит в следующем:

  1. все цифры правее данного разряда заменяют нулями (если эти цифры находятся до запятой) или отбрасывают (если эти цифры находятся после запятой);
  2. если первая цифра, следующая за данным разрядом, меньше 5, то цифру данного разряда не меняют;
  3. если первая цифра, следующая за данным разрядом, 5 и более, то цифру данного разряда увеличивают на единицу.

Пример 2

  1. Округлим число 17302 до тысяч: 17000.
  2. Округлим число 17378 до сотен: 17400.
  3. Округлим число 17378,45 до десятков: 17380.
  4. Округлим число 378,91434 до сотых: 378,91.
  5. Округлим число 378,91534 до сотых: 378,92.

Преобразование десятичного числа в обычную дробь.

Случай 1

Десятичное число представляет собой конечную десятичную дробь.

Способ преобразования демонстрирует следующий пример.

Пример 2

Имеем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Приводим к общему знаменателю и получаем:

Дробь можно сократить: $3,74=\frac{374}{100} =\frac{187}{50} $.

Случай 2

Десятичное число представляет собой бесконечную периодическую десятичную дробь.

Способ преобразования основан на том, что периодическую часть периодической десятичной дроби можно рассматривать как сумму членов бесконечной убывающей геометрической прогрессии.

Пример 4

$0,\left(74\right)=\frac{74}{100} +\frac{74}{10000} +\frac{74}{1000000} +\ldots $. Первый член прогрессии $a=0,74$, знаменатель прогрессии $q=0,01$.

Пример 5

$0,5\left(8\right)=\frac{5}{10} +\frac{8}{100} +\frac{8}{1000} +\frac{8}{10000} +\ldots $. Первый член прогрессии $a=0,08$, знаменатель прогрессии $q=0,1$.

Сумма членов бесконечной убывающей геометрической прогрессии вычисляется по формуле $s=\frac{a}{1-q} $, где $a$ - первый член, а $q$ - знаменатель прогрессии $ \left (0

Пример 6

Переведем бесконечную периодическую десятичную дробь $0,\left(72\right)$ в обычную.

Первый член прогрессии $a=0,72$, знаменатель прогрессии $q=0,01$. Получаем: $s=\frac{a}{1-q} =\frac{0,72}{1-0,01} =\frac{0,72}{0,99} =\frac{72}{99} =\frac{8}{11} $. Таким образом, $0,\left(72\right)=\frac{8}{11} $.

Пример 7

Переведем бесконечную периодическую десятичную дробь $0,5\left(3\right)$ в обычную.

Первый член прогрессии $a=0,03$, знаменатель прогрессии $q=0,1$. Получаем: $s=\frac{a}{1-q} =\frac{0,03}{1-0,1} =\frac{0,03}{0,9} =\frac{3}{90} =\frac{1}{30} $.

Таким образом, $0,5\left(3\right)=\frac{5}{10} +\frac{1}{30} =\frac{5\cdot 3}{10\cdot 3} +\frac{1}{30} =\frac{15}{30} +\frac{1}{30} =\frac{16}{30} =\frac{8}{15} $.

Действительные числа можно изображать точками числовой оси.

При этом числовой осью мы называем бесконечную прямую, на которой выбрано начало отсчета (точка $O$), положительное направление (указывается стрелкой) и масштаб (для отображения значений).

Между всеми действительными числами и всеми точками числовой оси существует взаимно однозначное соответствие: каждой точке соответствует единственное число и, наоборот, каждому числу соответствует единственная точка. Следовательно, множество действительных чисел является непрерывным и бесконечным так же, как непрерывна и бесконечна числовая ось.

Некоторые подмножества множества действительных чисел называют числовыми промежутками. Элементами числового промежутка являются числа $x\in R$, удовлетворяющие определенному неравенству. Пусть $a\in R$, $b\in R$ и $a\le b$. В этом случае разновидности промежутков могут быть такими:

  1. Интервал $\left(a,\; b\right)$. При этом $ a
  2. Отрезок $\left$. При этом $a\le x\le b$.
  3. Полуотрезки или полуинтервалы $\left$. При этом $ a \le x
  4. Бесконечные промежутки, например, $a

Важное значение имеет также разновидность промежутка, называемая окрестностью точки. Окрестность данной точки $x_{0} \in R$ -- это произвольный интервал $\left(a,\; b\right)$, содержащий эту точку внутри себя, то есть $a 0$ - його радіусом.

Абсолютная величина числа

Абсолютной величиной (или модулем) действительного числа $x$называется неотрицательное действительное число $\left|x\right|$, определяемое по формуле: $\left|x\right|=\left\{\begin{array}{c} {\; \; x\; \; {\rm при}\; \; x\ge 0} \\ {-x\; \; {\rm при}\; \; x

Геометрически $\left|x\right|$ означает расстояние между точками $x$ и 0 на числовой оси.

Свойства абсолютных величин:

  1. из определения следует, что $\left|x\right|\ge 0$, $\left|x\right|=\left|-x\right|$;
  2. для модуля суммы и для модуля разности двух чисел справедливы неравенства $\left|x+y\right|\le \left|x\right|+\left|y\right|$, $\left|x-y\right|\le \left|x\right|+\left|y\right|$, а также $\left|x+y\right|\ge \left|x\right|-\left|y\right|$,$\left|x-y\right|\ge \left|x\right|-\left|y\right|$;
  3. для модуля произведения и модуля частного двух чисел справедливы равенства $\left|x\cdot y\right|=\left|x\right|\cdot \left|y\right|$ и $\left|\frac{x}{y} \right|=\frac{\left|x\right|}{\left|y\right|} $.

На основании определения абсолютной величины для произвольного числа $a>0$ можно также установить равносильность следующих пар неравенств:

  1. если $ \left|x\right|
  2. если $\left|x\right|\le a$, то $-a\le x\le a$;
  3. если $\left|x\right|>a$, то или $xa$;
  4. если $\left|x\right|\ge a$, то или $x\le -a$, или $x\ge a$.

Пример 8

Решить неравенство $\left|2\cdot x+1\right|

Данное неравенство равносильно неравенствам $-7

Отсюда получаем: $-8


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

Оборудование: проектор, экран, персональный компьютер, мультимедийная презентация

Ход урока

1. Организационный момент.

2. Актуализация знаний учащихся.

2.1. Ответить на вопросы учащихся по домашнему заданию.

2.2. Разгадать кроссворд (повторение теоретического материала) (Слайд 2):

  1. Комбинация математических знаков, выражающая какое-нибудь
утверждение. (Формула. )
  • Бесконечные десятичные непериодические дроби. (Иррациональные числа)
  • Цифра или группа цифр, повторяющихся в бесконечной десятичной дроби. (Период. )
  • Числа, используемые для счета предметов. (Натуральные числа.)
  • Бесконечные десятичные периодические дроби. (Рациональные числа.)
  • Рациональные числа + иррациональные числа = ? (Действительные числа.)
  • – Разгадав кроссворд, в выделенном вертикальном столбце прочитайте название темы сегодняшнего урока. (Слайды 3, 4)

    3. Объяснение новой темы.

    3.1. – Ребята, вы уже встречались с понятием модуля, пользовались обозначением |a | . Раньше речь шла только о рациональных числах. Теперь надо ввести понятие модуля для любого действительного числа.

    Каждому действительному числу соответствует единственная точка числовой прямой, и, наоборот, каждой точке числовой прямой соответствует единственное действительное число. Все основные свойства действий над рациональными числами сохраняются и для действительных чисел .

    Вводится понятие модуля действительного числа. (Слайд 5).

    Определение. Модулем неотрицательного действительного числа x называют само это число: |x | = x ; модулем отрицательного действительного числа х называют противоположное число: |x | = – x .

    Запишите в тетрадях тему урока, определение модуля:

    На практике используют различные свойства модулей , например. (Слайд 6) :

    Выполнить устно № 16.3 (а, б) – 16.5 (а, б) на применение определения, свойства модуля. (Слайд 7) .

    3.4. Для любого действительного числа х можно вычислить |x | , т.е. можно говорить о функции y = |x | .

    Задание 1. Построить график и перечислить свойства функции y = |x | (Слайды 8, 9).

    Один ученик на доске строит график функции


    Рис 1 .

    Свойства перечисляются учащимися. (Слайд 10)

    1) Область определения – (– ∞; + ∞) .

    2) у = 0 при х = 0; y > 0 при x < 0 и x > 0.

    3) Функция непрерывная.

    4) у наим = 0 при х = 0, у наиб не существует.

    5) Функция ограничена снизу, не ограничена сверху.

    6) Функция убывает на луче (– ∞; 0) и возрастает на луче }

    Понравилась статья? Поделитесь с друзьями!