Отличие переменного тока от постоянного. Как получить постоянное напряжение из переменного 12 в переменного тока в постоянный

Напряжение в бытовой электрической сети, как известно, составляет 220 или 380 В. Однако, не для всех приборов такое электропитание является «удобоваримым».

Некоторым требуется напряжение всего в 12 В и такие приборы приходится подключать через особое устройство - трансформатор.

Как меняет трансформатор 220 на 12 вольт и каким образом можно собрать это устройство самостоятельно - этой теме будет посвящен наш разговор.

Итак, трансформатором называется электрический прибор, занимающийся преобразованием электрической энергии, а именно - изменением напряжения. Если выходное, то есть измененное, напряжение получается меньше входного, трансформатор называют понижающим. Если наоборот, в результате преобразование напряжение увеличивается, то трансформатор называют повышающим.

Понижающий трансформатор 220/12

Для чего нужен понижающий трансформатор в быту? Низковольтным электричеством питаются ноутбуки и мобильные телефоны, но они всегда продаются вместе с трансформаторами, именуемыми в обиходе «блоками питания». Иное дело - низковольтное освещение, в котором используются галогенные или ультрасовременные светодиодные светильники.

Обзавестись таковым хотят сегодня очень многие - из-за целого ряда преимуществ:

  • отсутствует опасность поражения электротоком и возникновения пожара (особенно желательно оборудовать таким освещением ванные комнаты и другие помещения с повышенной влажностью);
  • по сравнению с традиционными низковольтные светильники являются намного более экономичными: к примеру, светодиоды при той же светимости потребляют энергии в 15 раз меньше, чем лампа накаливания на 220 В;
  • служат низковольтные светильники гораздо дольше аналогов на 220 В: производители светодиодов обещают 50 тыс. часов работы и при этом на 3 года даже дают гарантию.

Чтобы подключить такую систему освещения, трансформатор приходится приобретать отдельно. Но в самом простом исполнении его можно сделать и самостоятельно.

Принцип работы с 220 на 12 В

Самый простой трансформатор состоит из двух катушек провода с различным числом витков. Одна катушка - она называется первичной - подключается к источнику переменного тока, в роли которого обычно выступает бытовая электросеть.

Как известно, проводник, по которому протекает переменный ток, становится генератором электромагнитного поля, а если он еще и смотан в катушку, то поле получается более плотным. При этом поскольку ток является переменным, то и электромагнитное поле получается таким же.

Далее в строгом соответствии с законом электромагнитной индукции генерируемое первичной катушкой переменное электромагнитное поле наводит во вторичной катушке ЭДС. Важно понимать, что ЭДС появляется именно при изменении количества или интенсивности силовых линий, пронизывающих проводник.

Принцип работы преобразователя напряжения

То есть, либо поле должно быть постоянно изменяющимся (такое поле и называют переменным), либо проводник должен в нем двигаться (именно это происходит в электрогенераторах). Отсюда вывод: если первичную катушку подключить к источнику постоянного тока, трансформатор функционировать не будет.

Чтобы первичная катушка имела высокую индуктивность, а также для сосредоточения магнитного потока внутри катушек, их наматывают на сердечник из ферромагнитной стали.

При отсутствии такого сердечника подключенный к бытовой сети трансформатор не только не будет функционировать, но и попросту сгорит.

То, как изменится напряжение на выходе трансформатора, зависит от соотношения числа витков в катушках. Если во вторичной катушке их меньше, напряжение окажется пониженным, при этом оно будет во столько же раз меньше входного напряжения, во сколько число витков во вторичной катушке меньше, чем в первичной. То есть, к примеру, если первичная катушка состоит из 2 тыс. витков, а вторичная - из 1 тыс. витков, и при этом на первичную катушку подается напряжение в 220 В, то во вторичной появится ЭДС в 110 В.

Преобразователь напряжения

Соответственно, чтобы преобразовать напряжение с 220 В до 12 В, число витков во вторичной катушке должно быть в 220/12 = 18,3 раза меньше, чем в первичной.

Поскольку мощность от одной катушки другой передается почти в полном объеме (доля потерь зависит от КПД трансформатора), а мощность представляет собой произведение напряжения на силу тока (W = U*I), то с силой тока в катушках наблюдается противоположная картина: во сколько раз уменьшится напряжение во вторичной катушке, во столько же раз сила тока в ней будет больше, чем в первичной.

Следовательно, вторичную катушку в понижающем трансформаторе нужно мотать более толстым проводом, чем первичную.

Порядок сборки

Конструирование трансформатора начинается с расчета его параметров. Задаемся следующими величинами:

  1. Напряжение на входе: 220 В.
  2. Напряжение на выходе: 12 В.
  3. Площадь поперечного сечения сердечника: принимаем S = 6 кв. см.

N = K*U/S,

  • N - количество витков;
  • K - эмпирический коэффициент. Можно принять К = 50, но для того, чтобы избежать насыщения трансформатора, лучше принять К = 60. При этом несколько увеличится число витков и сам трансформатор станет чуть больше, но зато уменьшатся потери.
  • U – напряжение в обмотке, В.
  • S - площадь поперечного сечения сердечника, кв. см.

Автомобильный преобразователь напряжения 12-220 В своими руками

Таким образом, в первичной катушке число витков составит:

N1 = 60*220/6 = 2200 витков,

во вторичной:

  • медный провод, заключенный в шелковую или бумажную изоляцию: для первичной катушки - сечением 0,3 кв. мм, для вторичной - 1 кв. мм (при силе тока в цепи нагрузки менее 10 А);
  • несколько консервных банок (жесть пойдет на изготовление сердечника);
  • плотный картон;
  • лакоткань (ленточная изоляция);
  • пропитанная парафином бумага.

Схема мощного инвертора

Процесс изготовления трансформатора выглядит так:

  1. Из банок нужно вырезать 80 полос размером 30х2 см. Жесть нужно подвергнуть отжигу: ее помещают в печь, нагревают до высокой температуры, а затем оставляют остывать вместе с печью. Суть обработки состоит именно в постепенном остывании, в результате которого сталь размягчается и теряет упругость.
  2. Далее пластины нужно очистить от копоти и покрыть лаком, после чего каждая из них с одной стороны оклеивается тонкой бумагой - папиросной или пропарафиненной.
  3. Из плотного картона необходимо изготовить каркас для обмоток, состоящий из ствола и щечек. Он должен быть обмотан в несколько слоев пропитанной парафином бумагой, также можно воспользоваться чертежной калькой.
  4. На каркас виток к витку нужно намотать провод. Для ускорения этой операции можно сделать простенький намоточный станок: надеть каркас на стальной прут, вставить последний в пазы, проделанные в двух досках, и затем согнуть один конец в виде ручки. При укладке провода через каждые два-три витка нужно прокладывать бумагу с парафином - для изоляции. Когда намотка первичной катушки будет завершена, нужно зафиксировать концы провода на щечках каркаса и обмотать катушку бумагой в 5 слоев.
  5. Направление намотки вторичной катушки должно совпадать с направлением первичной.

Можно изготовить трансформатор, способный понижать напряжение и до 12-ти, и до 24-х вольт, которые требуются некоторым светильникам и другим приборам. Для этого на вторичную катушку нужно намотать 240 витков, но со 120-го сделать вывод в виде петли.

  1. Закрепив на второй щечке каркаса выводы вторичной катушки, ее (катушку) также обматывают бумагой.
  2. Жестяные пластины на половину длины нужно вставить в катушку, после чего ими огибают каркас, так чтобы концы соединились под катушкой. Обязательным является наличие зазора между пластинами и каркасом.
  3. Теперь самодельный трансформатор нужно закрепить на основе - фрагменте деревянной доски толщиной порядка 50-ти мм. Для крепления следует использовать скобы, которые должны охватить нижнюю часть сердечника.

В завершении концы обмоток выводятся на основание и оснащаются контактами.

Подключение

Чтобы подключить трансформатор, нужно к контактам вторичной обмотки подсоединить нагрузку, а затем на контакты первичной катушки подать напряжение бытовой электросети.

Схема подключения ко вторичной обмотке зависит от того, какое напряжение нужно получить на выходе: если 24 В - подключаемся к крайним выводам, если 12 В - к одному из крайних выводов и выводу от 120-го витка.

Схема подключения точечных светильников 12В через трансформатор

Если потребитель работает на постоянном токе, к выводам вторичной катушки нужно подключить выпрямитель. В этом качестве используется диодный мост, снабженный конденсатором (играет роль фильтра, сглаживая пульсации).

Выбор готового решения

Сегодня трансформатор с любыми параметрами можно найти в магазинах радиоэлектроники или сварочного оборудования. Наряду с традиционными продаются и устройства нового поколения - трансформаторы инверторные. В таких приборах ток перед поступлением на первичную обмотку сначала проходит через выпрямитель.

А потом - через собранный на базе микросхемы и пары ключевых транзисторов инвертор, снова превращающий ток в переменный, но с гораздо большей частотой: 60 – 80 кГц вместо 50-ти Гц. Такое преобразование входного тока позволяет значительно уменьшить размеры трансформатора и сильно сократить потери.

Ящик с понижающим трансформатором ЯТП 0,25

Подбирать трансформатор следует по следующим характеристикам:

  1. Входное напряжение и частота тока: в характеристиках прибора должно быть указано «220 В» или «380 В», если он приобретается для 3-фазной сети. Частота должна составлять 50 Гц. Есть трансформаторы, которые рассчитаны, к примеру, на частоту в 400 Гц и более - при подключении напрямую к бытовой электросети такой прибор сгорит.
  2. Напряжение и тип тока на выходе: с выходным напряжением все понятно - оно должно соответствовать напряжению, на которое рассчитан электропотребитель. Но при этом важно не забыть посмотреть, какой ток выдает трансформатор. Многие из них сегодня комплектуются выпрямителями, в результате чего ток на выходе получается не переменным, а постоянным.
  3. Номинальная мощность: очень важно, чтобы максимальная мощность, с которой может работать трансформатор (она и называется номинальной), была примерно на 20% больше мощности нагрузки. Если этого запаса не будет, а тем более если номинальная мощность трансформатора окажется меньше мощности, потребляемой нагрузкой, обмотки преобразователя перегреются и сгорят.

Трансформаторы бывают:

  1. Открытыми: снабжены негерметичным кожухом, внутрь которого могут попадать влага и пыль. Но зато имеется возможность принудительного охлаждения при помощи вентилятора.
  2. Закрытыми: снабжены герметичным корпусом с высокой степенью влаго- и пылезащиты, поэтому могут устанавливаться в помещениях с повышенной влажностью.

Модели с алюминиевым корпусом могут эксплуатироваться в условиях улицы (уличное освещение светодиодными лампами, реклама). Из-за невозможности применить принудительное охлаждение мощность закрытых трансформаторов является ограниченной.

Трансформатор ОСМ-1-04

Также трансформаторы бывают:

  • стержневыми: катушки можно располагать только в вертикальном положении;
  • броневыми: работают в любом положении.

Стоимость трансформаторов сильно варьируется и в первую очередь зависит от мощности. Вот несколько примеров:

  1. ЯТП-0,25. Прибор с номинальной мощностью 250 Вт, оснащенный корпусом. Стоимость составляет 1700 руб.
  2. ОСМ-1-04. Может работать с входным напряжением 220 В или 100 – 127 В, выходное составляет 12 В. Корпус отсутствует. Стоимость - 2600 руб.
  3. ОСЗ-1 У2 220/12. Трансформатор на 1 кВт. Стоит 5300 руб.
  4. ТСЗИ-4,0. Преобразователь с корпусом, номинальная мощность составляет 4 кВт. Входное напряжение - 220 или 380 В, выходное - 110В или 12 В. Стоимость - 10,5 тыс. руб.

Переносной трансформатор в корпусе ТСЗИ-2,5 кВт. может подключаться как к 220 В, так и к 380 В, на выходе - 12 В. Стоимость - 13,9 тыс. руб.

Видео на тему

Сегодня мы с вами попробуем разобраться, что из себя представляет напряжение 12 вольт. Кто это за монстр такой? Насколько сильно кусается? И вообще, на что он способен? Поверьте, то, что он слабее чем обычный монстр с напряжением в 220 вольт - это сказки. Интересно, тогда поехали.

Начнём с истории возникновения. А история проста, вся суть в безопасности. Ведь все, что изобретается, делается по двум причинам. Первая - лень, она, как известно, двигатель прогресса. Вторая - желание себя обезопасить, ведь мы с вами частенько чего-нибудь боимся. Тут и возникает потребность в инновациях. Ведь нас постоянно пугают тем, что нельзя совать пальцы в розетку - убьёт. Хотя, если мы с вами засунем пальцы в розетку, вряд ли с нами случится что-то более страшное, чем легкий шок. Но ведь у многих из нас с вами дома есть дети и домашние животные. Дети - люди любознательные. Им все всегда интересно, и ребёнок не ребёнок, если прополз мимо розетки. Он обязательно должен засунуть туда пальцы. А вот если его ударит током, то ничего хорошего точно не будет. Понятно, что все зависит от конкретного случая, но лучше не экспериментировать. А если животное залезет в розетку? И хорошо, если ваш кот спалит себе только усы и пару минут посидит в шоке под кроватью. Но все может быть страшнее.

Так, хватит жути нагонять. 12 вольт - это безопасное напряжение, которое способно решить сразу массу проблем. Но к сожалению это напряжение не распространено именно в розетках, так как под него просто не делают электроприборов.

Давайте обратимся к истокам. Существует масса опасных для электричества помещений или имеющих повышенный уровень опасности. К таким помещениям в вашей квартире можно отнести - кухню, ванную комнату и другие подобные пространства. Представьте какое короткое замыкание способен устроить электрический монстр на 220 вольт? Последствия могут выходить далеко за грань нашего представления. И поверьте, они могут не ограничиться сработавшими системами безопасности. 12 же вольт, точно не устроят катастрофу планетарного или даже квартирного масштаба. В худшем случае сработают системы безопасности или перегорит трансформатор.

Теперь про то, откуда появилось напряжение на 12 вольт. Такое напряжение в большинстве случаев используется для освещения и оттуда оно и берет начало. Несколько десятков лет назад были изобретены галогенные лампы для бытового применения. Что такое галогенная лампа? Эта та же самая лампа накаливания, но имеет больший срок службы и гораздо меньший размер. Благодаря чему это возможно? Благодаря тому, что колба такой лампы заполнена газом, содержащим галоген, например йод. Нить накаливания в такой среде изнашивается гораздо медленнее. Вот и получается, что такая лампа работает в два раза дольше, при размере в одну четвертую обычной. Но причём тут напряжение 12 вольт? А при том. Кто-то провёл опыты и понял, что при таком напряжении нить накала подвержена гораздо меньшему разрушительному воздействию электрического тока. А это значит, что её можно нагреть до большей температуры и, следовательно, получить больше света. Добавьте к этому практически абсолютную безопасность для влажных помещений. Получается очень крутой способ проводки и освещения.


Но не стоит торопиться, как и с любым бесплатным сыром, здесь тоже есть мышеловки. Заключаются они в трансформаторе. А так как во всей остальной квартире напряжение 220 вольт, он нам обязательно понадобиться, без него никак не обойтись. А лишний элемент в сети электропитания, как известно, снижает её надежность. Но единственное, чем может быть опасен трансформатор, так это тем, что он попросту перегорит. Давайте теперь перейдём к описанию самой сети, к тому как она строиться и что для этого нужно.

Сама по себе сеть с напряжением 12 вольт начинается именно с трансформатора. Именно он преобразует обычные 220 вольт в 12. Но трансформатор нужно подбирать с умом. Не будем вдаваться в частности устройства самого трансформатора. Скажу одно, трансформатор должен быть подходящей мощности. Это значит, что для начала стоит понять сколько будет ламп, какова их суммарная мощность. К полученному значению стоит прибавить процентов 40 запаса, и вы получите нужную мощность трансформатора. В противном случае трансформатор может очень быстро выйти из строя, а это не есть хорошо.

После того, как вы выбрали трансформатор, стоит задуматься о светильниках и лампах. В светильниках нет ничего необычного, многие светильники универсальны, но перед покупкой на всякий случай стоит уточнить. А вот с лампами дела обстоят несколько сложнее. Они разделяются на лампы, которые работают от 220 вольт, и те, что работают от 12. И если 220-ваттные лампы от 12 вольт просто не заработают, то в обратной последовательности начнутся вспышки. Из-за перенапряжения лампа может взорваться. Поэтому просто проверяйте маркировку, и все, как говориться, будет пучком. Лампы, рассчитанные на 12 вольт, как правило стоят дороже. Просто потому, что безопаснее, никакой другой конструктивной и кардинальной разницы в конструкции нет.

Если говорит про связующее звено ламп и трансформатора - провод, то он может быть любым. Но огромным плюсом является то, что можно использовать провода маленького сечения. Так как при таком напряжении сети перегревы практически невозможны. Есть специальные провода, они продаются в магазинах, но подойдет любой провод маленького сечения. Теперь вы знаете все.

Вывод: Низковольтное освещение это огромный плюс для бытового использования, да и для некоторых промышленных объектах. Сами понимаете, безопасность превыше всего. Так же огромным и несомненным плюсом является то, что вы можете сами сделать такую проводку у себя в ванной или на кухне. Согласитесь в статье не описано не одного сложного процесса. С многими из этих процессов справиться даже ребенок, но им этого лучше не поручать.

Электрический ток- это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах - ионов, а в газах - электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток (DC, по-английски Direct Current) - это электрический ток, у которого свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока, потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока - частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока - действующее значение напряжения и частота.

Обратите внимание , как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота — это отношение числа полных циклов (периодов) к единице времени периодически меняющегося электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями к электрощиту. У многих возникает вопрос: а почему в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.
С электростанции , где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 , далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи выпрямителей.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор - это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

  1. Донорные — превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
  2. Акцепторные — превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» — место, которое покинул электрон, ведет себя аналогично положительному заряду.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью — хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа — пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный — его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности — на рис. 1в.

Вернуться к оглавлению

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим — отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В — во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) — увеличивается от 0 до 311 В;
  • вторую четверть периода — уменьшается от 311 В до 0;
  • третью четверть периода — уменьшается от 0 до 311 В;
  • последнюю четверть периода — возрастает от 311 В до 0.

В этом случае 311 В — амплитуда напряжения U о. Амплитудное и действующее (U) напряжения связаны между собой формулой:

Рисунок 3. Диодный мост.

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным — одну половину периода ток в цепи есть, во время второй — отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра C ф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Вернуться к оглавлению

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.


На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

  1. Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.


Принципиальная электрическая схема
  1. Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3 . Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

  1. Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл ), а монтажный чертеж (файл ) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом. Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

  1. Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

  1. Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

  1. Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.



Понравилась статья? Поделитесь с друзьями!